Estimating PI with Monte Carlo

De Augusto Baffa Wiki
Revisão de 10h11min de 30 de dezembro de 2020 por Abaffa (discussão | contribs) (Criou página com 'Monte Carlo algorithms attempt to estimate through random sampling, as it can be time intensive to calculate the actual value. Monte Carlo makes use of random samples to gener...')
Ir para navegação Ir para pesquisar
Outros idiomas:
English • ‎português do Brasil

Monte Carlo algorithms attempt to estimate through random sampling, as it can be time intensive to calculate the actual value. Monte Carlo makes use of random samples to generate a good estimate. There are many different Monte Carlo techniques, some of which are hybrids between Monte Carlo and other techniques. (Robert, 2005)


Um exemplo simples de Monte Carlo é sua estimativa do valor de PI

Agora colocaremos pontos aleatórios dentro do quadrado e do círculo. A proporção de pontos internos e externos nos dirá o valor de PI. A área do quadrado é o comprimento multiplicado pela largura. Como um quadrado tem a mesma largura que o comprimento, a área do quadrado é essencialmente a largura vezes ela mesma, ou largura ao quadrado.


A área de um círculo é PI vezes seu raio ao quadrado. O diâmetro do círculo é igual à largura do quadrado. Vamos calcular a razão da área do círculo para o quadrado usando a equação abaixo.


[math] p = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}[/math]


A largura do quadrado é igual a duas vezes o raio do círculo. Portanto, podemos descrever o diâmetro do quadrado como duas vezes o raio ao quadrado. Tomaremos a proporção de pontos dentro do círculo para fora e multiplicaremos por 4. Isso nos dará uma aproximação de PI.

Exemplo em Python

Exemplo de sorteios
def estimate_pi(times = 10000, seed1=None, seed2=None):
    tries=0
    success=0

    # pick a point at random.
    if seed1 == None:
        t = time.perf_counter()
        seed1 = int(10**9*float(str(t-int(t))[0:]))
    x = pseudo_uniform(seed=seed1, size=times)

    if seed2 == None:
        t = time.perf_counter()
        seed2 = int(10**9*float(str(t-int(t))[0:]))
    y = pseudo_uniform(seed=seed2, size=times)

    for i in range(times):
        tries += 1

        # was the point inside of a circle?
        if x[i] * x[i] + y[i] * y[i] <= 1:
            success += 1
            
    pi = 4 * success / tries
    
    return pi

Exemplo:

import math

est_pi = estimate_pi(10000000, 123456789, 987654321)

print("Estimated PI: %f" % est_pi)
print("Real PI: %f" % math.pi)
print("Error: %f" % abs(est_pi - math.pi))

Estimated PI: 3.142123

Real PI: 3.141593

Error: 0.000531

Veja Também